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Abstract 

After a comparison of Kato's theory of extinction 
with the conventional energy-transfer coupling 
model, it is shown that both models can be solved 
exactly for crystals with planar boundaries. Integrated 
reflecting power can be obtained analytically for a 
parallelepipedic crystal, which allows for a com- 
parison with approximate treatments (such as the 
Becker-Coppens Laue formula or the infinite slab 
expression). For general geometric conditions, 
numerical integration may be needed. Respective use- 
fulness of various models is discussed. 

Introduction 

Let us first discuss two types of difficulties in extinc- 
tion theory. 

I. Nature of the propagation equations 

The most fundamental question is to find a physi- 
cally meaningful model to describe the propagation 
of the incident and diffracted beams. 

The usual phenomenological model relies on the 
Zachariasen-Hamilton intensity coupling equations. 
Let So and Sh be the coordinates along the incident- 
beam direction (intensity Io) and the diffracted beam 
direction (intensity Ih). The coupling equations are 

oIo 
_ - -  t r i  o + t r I  h 

OSo 

OIh 
- -  trlh + trio. 

OSh 

(1) 

Absorption is neglected here (see Becker & Coppens, 
1974). The model assumes a wide homogeneous 
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incident beam described by plane waves, and there- 
fore the coupling term tr, as well as Io and Ih, are 
functions of the divergence e of the incident beam. 
tr(e) represents the effective kinematical cross section 
of the distorted crystal and verifies 

J' tr(e) de = Q, (2) 

where Q, the kinematical total cross section per unit 
volume, is 

Q = sin 20 '  (3) 

with C = polarization factor x re for photons, C = 
10 -12 cm for neutrons, F is the structure factor and 
V denotes the unit-cell volume. The crystal volume 
being v, for an incident beam of unit intensity, the 
kinematical power is 

~k = vQ. (4) 

This model has been widely used, and has proved to 
be very successful in reproducing experimental trends 
even in cases of severe extinction. However, draw- 
backs are well known, especially due to the strong 
dependence on the shape of the function tr and the 
physical meaning of its line width. 

More recently, starting from Takagi's equations, 
Kato (1976, 1979) has shown that one may write 
intensity coupling equations under very definite con- 
ditions. Kato defines a phase correlation function 
f(t)  = (exp [2 i l l .  u(r)] exp [ -2~r iH.  u(r+t)]), where 
H is the Bragg vector and u(r) is the local distorsion 
vector. Defining ~" as being a characteristic width of 
f(t)  (correlation distance) and remembering the defi- 
nition of the critical dynamical dimension A (extinc- 
tion distance in a symmetrical case) 

A = { Q s i n 2 0 }  -'/2 V 
A = ACIF----~" (5) 

Kato has explicitly shown that if 

z < A (6) 

equations (1) are still valid. However, his derivation 
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242 DIFFRACTION BY A FINITE CRYSTAL 

originates from a spherical wave description. Hence, 
the coupling term or (which we will denote by or K) is 
a constant: 

cr K = 2r /  A 2. (7) 

(We will write, for this model, the intensity as Io r and 
Ihr.) Kato has proposed corrections to be applied 
when r - A ,  where primary extinction becomes 
important. 

It is very clear that by reducing the wavelength one 
increases the chance for (1) to be valid. 

It occurs in practice that the conventional model 
is better adapted to experimental situations than 
Kato's simple model. We believe that this is due to 
(6) being rarely satisfied, which means that 'real crys- 
tals' may be often more perfect than we expect. We 
also believe that one of the reasons for the success 
of conventional models comes from the fact that, for 
severe extinction, the solution has an asymptotic limit 
similar to a dynamical behaviour (PozlF[). 

We would like to end this discussion by pointing 
out the most recent general statistical approach of 
Kato (1980b, 1982), which in principle covers the 
whole range between perfect and ideally imperfect 
crystal's. This theory separates the coherent from the 
incoherent part of the beams and results in two sets 
of dependent propagation equations. The model is 
therefore very complex for a general crystal geometry 
but it is rather urgent to solve, even approximately, 
this attractive approach. Kato so far has produced a 
solution only for symmetrical Laue geometry in an 
infinite parallel slab. 

In the present paper, we shall assume that (1) [or 
modified by (6)] are a valid approximation. 

2. Nature o f  the solution 

There exists a second difficulty, connected with the 
boundary conditions at the surface of the crystal. It 
has been shown (Becker & Coppens, 1974; Bonnet, 
Delapalme, Becker & Fuess, 1976) that a general 
solution of (1) is easy to get in a pure Laue geometry, 
when the entrance surface of the incident beam does 
not overlap with the exit surface of the scattered 
beam. A general configuration is sketched in Fig. 1. 

i t s  c 1 
"1o 
u ¢/if~ 

Fig. 1. General diffraction configuration, showing the ambiguity 
in the boundary conditions on the portion BC. 

It is easily seen that no simple boEundary condition 
can be written for the portion CB which is in a 
reflexion (Bragg) situation. The smaller the Bragg 
angle 0, the less important the ambiguity: another 
advantage of using small wavelengths. 

The approximate solution of Becker & Coppens 
(1974), which has been used for a general crystal 
shape, and led to a programmable expression for 
extinction, consists in neglecting the corrections due 
to the portion C~, and therefore in locally using the 
Laue-case solution. 

It is in fact the purpose of the present paper to 
show that a general analytical solution to equations 
of type (1) is possible for a mixed Laue-Bragg con- 
figuration. We shall consider explicitly a crystal in 
the shape of a parallelepiped. It will therefore be 
possible to discuss the conventional model versus 
Kato's model. It will also be ofgreat interest to discuss 
the validity of the Becker-Coppens approximation, 
and also to see under what conditions we can approxi- 
mate a finite plate by an infinite slab. 

Calculations of wavefields for mixed Laue-Bragg 
geometries have already been considered by Saka, 
Katagawa & Kato (1972) who obtained the expression 
for wave amplitudes inside a perfect sample. 

Geometrical considerations and boundary conditions 

In order to solve the boundary conditions for a gen- 
eral situation simila_~r to Fig. 1, we decompose the 
entrance surface A C B  into a superposition of point 
sources S. If M is a point on the exit part of the 
surface CBD, the pair of points (S, M) uniquely 
defines a point m which may vary in the extended 
volume v' defined by the contour A C B M D E A  (see 
Becker, 1977). If we call I (m)  the intensity at M 
coming from the point source S: I(rn)= Ih(S-~ M),  
the diffracted power is given by 

P = ~ l (m)  dr,,,. (8) 
v. 

Conventional treatments involve a further integration 
over e, leading to 

= J P de. (8') 

In Kato's approach 

_ h f IK(m) dvm. (9) ~r  
sin 2 0 

D' 

With the point sources, the boundary conditions are 
very simple. On the entrance surface: 

lo=6(Sh). (10) 

Let us make the following transformation: 

Io= Jo exp [-o'(so + sD] 
(ll) 

Ih = Jh exp [- (r(So + sh)]. 
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Equations (1) become the system 

aJo 
--  orJ h 

aSo 

OJh (12) 
-- orJ 0 

as h 

(and similar for Kato's theory). 
In the conventional treatment, we have shown 

(Becker, 1977) that 

lim Jh(So, ~7) = tr. (13) 
r/~O 

However, in Kato's theory, the same condition cannot 
apply, since ~- involves multiple scattering. Kato 
(1980a) has shown that 

lim Jff(So, r/)= 1 / 4  2. (13') 
-O~0 

Generally we may write 

1 
I ~ ( m ) = ~  Ih(m, trK). (14) 

We now consider the possible scattering geometries 
of diffraction for a rectangular crystal (Fig. 2). In the 
case of Fig. 2(a), there is no overlap between entrance 
and exit surfaces. This is the pure 'Laue geometry' 
which was dealt with previously (Bonnet et al., 1976). 
Fig. 2(c), corresponds to the pure reflexion case. It is 
clear that the Bragg angle 0 is large in this case, so 
that extinction is very small. We therefore discard 
this configuration. 

We shall here explicitly consider the configuration 
of Fig. 2(b), corresponding to an intermediate case, 
where the entrance and exit surfaces partly overlap 
(AB) .  Extended volumes v' corresponding to possible 
points m are shown in Fig. 3. Restricting ourselves 
now to case (b), we can distinguish between four 
distinct configurations for point m, represented in 
Fig. 4. For multiple scattering processes, all points 
within the shaded domains can be excited as local 
scattering sites. Notice, however, that case (4) can 
only be encountered in the case of a flat crystal or 
for a large Bragg angle: in the following, we shall 
discard such a case. Let us denote the dimensions of 

__p..<~ c D c D c 

I 
(a) (b) (c) 

Fig. 2. Scattering geometries for a rectangular crystal. (a) Trans- 
mission, (b) mixed case, (c) reflexion. 

the sample as 

a = A B  = C D  

b = B C  = DA.  

We shall not encounter the situation of Fig. 4(a) as 
long as 

tan ao<  b / a, tan ah < b / a, (15) 

the angles ao and ah being defined in Fig. 2. Thus, 
for each point m inside v' (Fig. 2b), we calculate I ( m )  
and then integrate through (8) or (9). v' can be divided 
into three domains, according to the configuration 
for point m (Fig. 5) where the subdivision of domain 
2 will appear later. 

Calculation of  intensity coming from a point source 

1. If m belongs to domain 1, the solution is that 
calculated by Becker (1977): 

Jl(m) = crlo[2tr(SoSh)W2], (16) 

where So = sm,  Sh = m M  (Fig. 4) and Io is a modified 
Bessel function. 

2. Suppose now that m belongs to domain 2. Four 
cases, each corresponding to a subdomain of Fig. 5, 
are represented in Fig. 6. The four cases can be treated 
uniquely, defining the main parameter 

c = S H  

(which can be zero). 

(a) (b) (c) 

Fig. 3. Extended volume v' where point m can vary. 

5 M 

HVK 

(1) ('2) 

m 

I , / ' . d  

m" 

(3) (4) 

Fig. 4. The four distinct situations for the point m with respect to 
crystal boundary. Case (4) will be discarded in this paper. 
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Let P (coordinates u, v) be a current point in the 
shaded area with respect to the origin S. We must 
distinguish the two situations 

v<c(P-)  
v > c (P+). 

Crystal boundary A B  is defined by the equation 

with 

/30 v - c = - - u  (17) 

13o = sin ao,/3h = sin O~ h. 

Let Jo, Jh be the solution of (12) for a point P- ,  and 
J~-, J~- the solution for a point P+. M is of P+ type. 
The solution of (12) can formally be written 

$o 

J (So, = o` 2 j dv v) 
0 0 

S h S O 
+o, 2 J dv ~ d u J ~ ( u ,  v)+o`. (18) 

c (13hlt3o)(v--c) 

Jh is given by (16). 

D C 

A B 

Fig. 5. Subdivision of volume v', according to situation for m 
depicted in Fig. 4. 

st 
A 

S o 

B B 
A H-"~, K 

rV~ 

(a) (b) 

B S B 

r'r3 s 

(c) (d) 

Fig. 6. Geometric construction for domain 2, in the calculation 
of l(m). 

We can formally write (18) as 
A 

(l - t )Jh  = O -, (19) 

which-is inverted into 
oo oo 

Jh= Y~ £" (o ' )=  E a,, 0`2"+'. (20) 
n~O n=O 

We get immediately 

ao = 1 

al = a-~ = SoSh (Sh < C) 

1 
al = a-~= SoSh - - ( f lh /  flO)'~(Sh -- C) 2 (Sh ~> C) 

t a-~ = s~s~, /n!n!  
a+, = ( s~ s'~/ n ! n !)--( flh/ flo) 

x [ ( S h  - -  C ) "  + l ( s 0  " q - / 3 h / / 3 0 C )  " - 1  ] 

[(n + 1 ) ! ( n -  1)!] -l 

The final result is 

=Jh(So,  Sh) J2(m) + 

= o` { lo[2o`(SoSh)l/2]_/3_hh (Sh -- C) 
/30 [So +(/3h//30)c] 

XI2(2O`{(Sh--C)[So +(/3hl/3o)C]}'l:)}. (21) 

3. When m belongs to domain 3, the situation is 
represented in Fig. 7. M cannot be reached from S 
through a single scattering. The lowest-order term in 
Jh must be 0(o`3). We shall consider the solution for 
Jo rather than for Jh. We denote c = SI .  The  boundary 
( C D )  obeys the equation 

V = (flo/flh)(U -- C) (22) 

and 

Jh(so, O)= o  ̀ (So < c) 
(22') 

Jh[SO, ( ~ O / / 3 h ) ( S o - - C ) ] = O  ( S o >  C). 

D L ~ ",J 

Fig. 7. Geometric construction for domain 3. 
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As in case (2), we distinguish P -  (So < c) from P+ (So > 
c) and through similar arguments we show that 

J3(m)= J-~(So, Sh) 

= or{Io[2or(SoSh) +~/2] 

-Io[2or{(So- C)[Sh +(/30/ /3h)C]}]1/2} . (23) 

4. Integration: we shall denote by m, m2, m3 the 
points m in the three domains 1,2, 3. The approximate 
Becker-Coppens (BC) solution, used in the general 
program L I N E X ,  is 

J ~ C = J l ( m  ) 

given by (16). We see that actual intensities are smaller 
than j a c  for points m 2 or m 3. However, the volume 
v' is larger than in the BC approximation where 

~BC= j" i~C(m ) dr.,. 
v 

There is a partial compensation of the error in the 
approximate solution. 

5. Expressions such as Jl(m), JE(m), J3(m) can be 
used very generally in numerically estimating the 
integrated power, and that for general shapes of crys- 
tals. In Fig. 8, we show how they can be employed 
to get better estimates than the BC approximation. 
For m,, J. can be applied. For m2 (m3), J2 (./3) 
have to be used, provided the curvilinear segments 
limiting shaded domains are replaced by straight 
lines. 

Kato (1982) has developed a similar scheme for a 
sphere and Dunstetter (1981) also proposed a solution 
for a perfect sample. 

In the following, we want an accurate comparison 
of various approaches and we show that extinction 
can be obtained analytically for a symmetrical 
geometry (ao = ah = 0). We therefore derive this exact 
solution. 

Diffracted power for symmetrical case 

Diffracted power ~ per unit height of the crystal 
along z (equation 8) is written as 

= ~ r ~ ,  (24) 

where ~ k - - "  or ab in conventional models, ~ = Q ab 
in Kato's model. 

We sketch once more the geometric conditions for 
the symmetric case in Fig. 9. We also introduce the 
following notations: 

y = cos 0 /3 = sin 0 

u = o rU  y v = or~ l /3 

[for domain 3 v = or(r / -  b)//3] 

p = ( a / b )  tan 0 x = o'a/3/. (25) 

For domain 1 the integration is straightforward 

~oz = ( 1 - 0 )  Io{2[u(x-u)]~/2}du. 
0 

Developing the Bessel function and using expressions 
of Appendix A, we obtain 

e-X 
~o~ =(1 - P )  sin hx. (26) 

x 

When p -> 0, the solution becomes that of the 'infinite 
parallel plate': 

e-X 
q ~ =  sin hx. (27) 

x 

From the general expression for I ( m )  obtained pre- 
viously, ~o can always be written as: 

~(x, o) = ~ ( x )  + oA~BC(x). 

Similarly, the Becker-Coppens approximation is 
written 

q~ BC(x, p) = ~°°(x) + pASo BC(x). (28) 

diffracted 
beol'~ 

Fig. 8. Possible scattering configuration for a crystal of general 
shape. 

~A E 

(!) 

A 
. . . . .  I~ 
[3 

Fig. 9. Domains in the symmetrical case; the integrated power is 
P= PI + P2 + P3. 
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Applying the solution found for l (m) in the preced- 
ing sections, and introducing the proper changes of 
variables, we can show that 

x/2 x-u 

A9BC(x) = ~--~ du dve-°'+v)lo[2(uv) '/2 ] 

0 u 
x / 2  u 

2 f dufdve-ZVlo(2V) 
+ x--- ~ 

o o 
x/2 x-u 

--2"--~ du dvlo{2[u(x-u)]l/2}; 

o o 
(29) 

a 9 ( x )  = a9~C(x)  

x/2 i e-X I +2--~- du dv{Io{2[u(x-u)] '/2} 
o o 

- 1o{2[v(x - v)]'/2}} 

x/2 f e-X I - 2--~- du dv [ ( x -  v)/ v] 

0 x - u  

x I d 2 [ v ( x -  v)] '/2} 
x/2 x- u 

- x-- 5 du dve  -°' +")(u/O)I2[2(UO) I/2] 
0 u 

x12 i 
- x- 5 du dv e-2'q2(2v). (30) 

o o 

The integrals are evaluated in Appendix B, and one 
finally obtains 

e - - x  

O(x, P ) =  sin hx 
X 

p [ e - X s i n h x  
+ 1 -  

X 
2 e-Xlt(x)] 

e -x sin hx cpBC(x' p)= e-Xsin hx + P 
2x 

(31) 

e -x sin hx e -x ) 
2x 2 +-~--[l~(x) + I2(x) ] .  ~ (32) 

Discussion 

Discussion of the previous result (31)-(32) is relevant 
to Kato's model. • is the extinction factor in this 
theory. 

One should notice that, generally, the extinction 
factor is considered as a function of X = trT, where 

is the mean path through the crystal. It is straight- 
forward to show that 

T = a [ 1 - p / 3 ] =  To~(1 - 0/3).  (33) 
Y 

Therefore, if using X rather than x, we have to apply 
the scaling law: 

X = ( 1 - p / 3 ) x .  (33') 

The following property is immediately observed: 
BC 

We present the three functions 9o~, Ag, A9 Bc in Fig. 
10, and the extinction factors 9oo, 9, 9 ac are shown 
for p =  1 in Fig. 11. It is observed that, even for 
reasonable extinction ( 9 -  0.5), the correction to the 
Becker-Coppens approximation is highly significant. 
The deviation from the infinite-slab approximation 
is also quite marked• To see this point more precisely, 
we plot 

9 -- 9 ~ 9 B C -  9 
X, - - - ,  X2 - - -  (34) 

9 9 

as a function of x, for various values of p (Fig. 12). 
For small values of x, a Taylor expansion shows 

that, to first order 
oo 

9 --- 1 - x  
(35) 

9 - - 9  Bc~ 1 - x  

as expected from general arguments (Becker & 
Coppens,  1974)• 

1" t q0 03 
.8 . . . .  A~0 
.6 . . . .  A q~BC 

' " ~ " = ' -  ----:- - - ~ -  --=--" . . . . . .  "-- X v 

10 20 30 

Fig. 10. Contributions to the extinction factor 9, as appearing in 
the text. 

I •  

~003 
.8 

. . . .  ~0 

.6 \ - - -  ~OBC 

,4 ~.,,,,,. -~-'g e - I 
• 2 " -  .-e.......... 

.-.~_ :...=..~ -=[..____ _._ _~ 
~ X  

10 2o 30 

Fig. 11. Various approximations for q~ when p = 1. 
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The limit for strong x is interesting to look at. Using 
the result 

we find 

lim e - t l , ( t ) =  1/(2~rt) I/2 
t"* OO 

g, -'- [1 +2p](1 /2x )  

2p - - I / 2  

~o 3(2~r)1/2 x 

(36) 

Of course, absorption should be included in this 
limit. However, we observe that ~oo or ~ tend towards 
a constant limit, independent of the structure factor: 
for instance, with ~ooo-0.5, ~oo is rather insensitive 
to F. It is well known from practical applications that 
such behaviour is not adapted to real data for severe 
extinction. As pointed out by Kato (1980c), when 
x --- 1, ~oo is smaller than ~ d y n  (calculated for a perfect 
crystal), which is physically nonsense. 45 is the extinc- 
tion correction in Kato's theory in the incoherent 
scattering limit {(exp [2zriH. u(r)])r = 0]: such a model 
is only valid when x < 1, i.e. when r T / A 2 <  1. 

The Becker-Coppens approximation has a rather 
different limit for large x, since pBCoc I FI and thus 
mimics the dynamical behaviour for strong coupling. 
This behaviour is an artefact of the approximations 
introduced, but may be a reason for the success of 
the method in terms of applications to real situations. 

precisely, the extinction factor y, defined as ( ~ / ~ k ) ,  
is given by 

4-00 

y = Q-!  ~ tr(e)~o[tr(e)a/y] de. (37) 
--OO 

We shall further assume that tr can be approximated 
by a Lorentzian: 

2gQ tr(O) 
o ' ( e ) -  1 +(~rge) 2 -  1 +(Trge) 2" (38) 

We define the usual extinction parameter 

1 
x~ = ~ tr(0)(a / Y) = gQToo, (39) 

which corresponds to the infinite plate case. As in 
the description of ~0, we may scale Too for a finite 
crystal and define 

X~ = g Q T =  x,[1-½p]. (39') 

A generalization of (28) leads to 
y = yoo + p a y  

(40) yaC = yoo + pAyBC. 

yoo was calculated by Bonnet et al. (1976): 

yoo = e-2X~{ Io(2X~) + il(2xs)}. (41) 

The terms Ay and Ay Bc are calculable (Appendix C) 
and are given by 

Extinction factor for Darwin-Zachar iasen  model  

In the conventional models, we have seen that the 
coupling term tr is a function of the angle e of 
departure from the Bragg condition. We therefore 
have to integrate the power P over the angle e. More 

oo 1 e_2X, l,(2xs) ay 

- [1  +2F2(½, 3; 1, 3; -4x~)] 

1 F ~ 1 ,(2xs) ] J Ay ac :gL y e-2X, I 

(42) 

60 .75 

50 .5 
40 
30 . .25 

20 .1 
1 . . . .  .05, 

10 20 30 

X2 

80 

6O 

4O 

2O 

q 

.75 

.5 

.25 

.1 

.05= X 

10 20 30 

Fig. 12. Relative variation of the extinction factor as a function 
of the parameter x, for different values of p. 

+ 6 E l  +2F2(32, 3; 2, 4 ; -4xs ) ] ,  

where 2F2  is a generalized hypergeometric function. 
The characteristics of (40) are summarized in Figs. 
13 and 14, and the conclusions are similar to those 
relative to ~o. In particular, for a given x~, 

when Xs is small 

yoo < y < yBC; (43) 

yoo--- 1 - x s  
(44) 

y.. .  yBC... 1 - x s .  

In the case of strong extinction, the following 
asymptotic behaviour is observed: 

1 oo 

Y [.n.xs]l/2" 

The function 2F2  has to be calculated numerically 
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and one observes 

yOO 1 + [~.xs]W2 , (45) 

so that for strong reflections and severe extinction, 
the integrated power becomes proportional to I FI, 
and remains in the range ~dy,, ~ki,- This is a fairly 
major difference with q~ (or Kato's extinction factor) 
and is obviously responsible for the practical success 
of the conventional treatment of extinction. It should, 
however, be noted that the most recent formulation 
of statistical theory of diffraction by Kato (1980b, 
1982) contains a coherent and an incoherent contribu- 
tion to the diffracted beam and should in principle 
overcome this difficulty. It is thus urgent to test this 
theory. One of us (PB) had a rather extended dis- 
cussion with Kato about this 'e dependence problem' 
in conventional models. One may summarize the dis- 
cussion as follows: the kinematical cross section o'(e) 
broadens the beam as it travels within the crystal: 
thus, in general, the energy conservation for a given 
value of the divergence e should be violated, in 
contradiction with (1) which is thus too strict a con- 
straint. This important point will be discussed separ- 
ately. 

We may als0 plot 

A y ~  Y _ yOO 

Y Y 

A y ~C y BC _ y 

Y Y 

I .  

.8 

.6 

.4 

.2 

. . . .  Dy 

~ . .__ - - - -  DYBc 

-- ~. -_..=.,,:. -.,..~ . . . . . . . . . . . .  7__ 

, m , L~-X S 
10 20  30 

Fig. 13. Contribution to the extinction factor y, as appearing in 
the text. 

(a) 

I .  

.8 

.6 

.4 

.2 

YOO 
. . . .  y 

'\ - ' - -  YBC 

~ . . ~  ~..... ~._.._: .~-.......: ~ : . . ~  :._--=. _ 

, J I -~  X S 
1o 20 30 

(b) 
Fig. 14. Approximations for y, where p = 1. 

as a function of xs for various values of p (Fig. 15). 
Though less marked than for ¢, the influence of the 
finiteness of the crystal is rather important;  it appears 
also that the BC approximation should be recon- 
sidered for cases of severe extinction. 

Conclusions 

We have shown that, for a crystal with planar boun- 
daries, it is possible to calculate analytically the 
intensity scattered from a point source. For general 
geometrical conditions, the diffracted power can be 
evaluated numerically by integration of these local 
intensity functions. We have shown that for a 
parallelepiped, in symmetrical geometry, the diffrac- 
ted power can be calculated exactly by analytical 
functions, which allowed us to discuss some approxi- 
mate solutions, such as the Becker-Coppens 
approximate-solution least-squares routine and the 
infinite-slab solution. Corrections to those approxi- 
mations are important for severe extinction. 

We have also discussed the behaviour of the 
solution to Darwin energy transfer equations, as 
compared to Kato's formulation of diffraction by 
statistically distorted crystals (starting from Takagi's 
dynamical equations). Kato's model in the limit of 
incoherent beam (energy transfer equations) leads to 
a formulation similar to Darwin's equations (except 
for the integration over divergence angle which disap- 
pears with Kato, since the theory is based on spherical 
waves): the behaviour for strong coupling leads to a 
power that does not depend strongly on the structure 
factor, though the e integration gives a dependence 
on I FI. Most crystals behave according to the conven- 
tional models in this sense. Dynamical behaviour 
(coherent beam) is also IF[ dependent,  so that Kato's 
complete theory with a progressive build up of inco- 
herence from the defects as the beam travels in the 
sample should be a physically better solution, though 
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Fig. 15. A2/7 and AyeC/yaC as funct ions of  x~, for various values 
of  p. 



PIERRE BECKER AND FRI~DI~RIC DUNSTETTER 249 

more difficult. But, even in this complete theory, the 
framework of the calculation of extinction will remain 
the same as discussed in this paper. 

A P P E N D I X  A 

Summary of some useful integrals and expressions 
(Abramowitz & Stegun, 1965). 

1. I,,(x)= k!(n +k)! (A.1) 

oo (_ l )k(  2k ~(x~ k (A.2) 
e-Xl"(x)=(-1F k~=~ T k k -  n / \2 /  " 

2. i e-'lo(t)dt=xe-~[Io(x)+l~(x)] (A.3) 
o 

i e- ' l ,(t) dt = x e-X[Io(x) + I~(x)] 
o 

+ e-Xlo(x) - 1. (A.4) 

For n_>2 

~. ( 2 n ; 2 ) = ~ { 2 2 . +  2 ( 2 n + l  
k=O - - \ n + l ) }  

(A.12) 

~-~"-P( ; ) ~ ( 2 n ; 2 )  y ,  2n 2 = ( n - k + l )  
p = 0  k = 0  k = 0  

1 (2n +2)!  
i 

2 n!(n + 1)!" 
(A.13) 

From (A.11) and (A.12), one can show that 
x / 2  

f t"(x-t)"dt=l(x]2"+l 1 
n!n! 2 \ 2 /  (2n +1)! 

o 

x / 2  

f t"+l(x- t)" dt 
(n + l ) !n !  

o 

- 2  I.(2nT2)! (n + 1)!(n +l)!J"  

(A.14) 

(A.15) 

. 

i e-tl ,(t)  dt = x e-X[Io(x + Ii(x)] 
o 

+ n[e-Xlo(x) - 1] 
n - - l  

+2 e -x Y~ (n-p)Ip(x) 
p = l  

f e-tt.l.(t)dt_e-Xx"+_______~ I 
2 n + l  

o 

dlo(x) 
- Il(x) 

dx 
dI. n 

-I.+,(x)+-I.(x). dx x 

(A.5) 

f tP(x - t)q xp+q +l 
dt P!ql - ( p + q + l ) !  

x / 2  

f dttP(x-t)q 
Pq 

o 

(p+q+l )V k " k = O  

f dt 
o 

t"(x-t)" 
nln! 

a.+o+l(x_ a)"-p 
- p=o (n + p  + 1)l(n -p ) !"  

k = 0  

[I,,(x) + I.+,(x)]. (A.6) 

(A.7) 

(a.8) 

(A.9) 

(A.10) 

(A.11) 

A P P E N D I X  B 

Calculation of the extinction factor q~(x) 

In order to calculate ~(x) and ~BC(x), some rather 
difficult integrals have to be evaluated. 

(26) is obtained by use of (A.8). 
(29) and (30) are derived through simple geometric 

arguments that will not be reproduced here. 

1. We now evaluate 

B, = du Io{2[u(x- u)] '/2} 
o 

B2 = du ulo{2[u(x- u)] 1/2} (B.1) 
0 

x / 2  
i *  

B3 = / du u 12{2[u(x-u)]l/2}. 
3 X - - U  
0 

If Bessel functions are developed (A. 1) and if (A. 13) 
and (A.14) are used, we get: 

1 
Bl = ~ sinh x 

2 

X 
B2 = ~[sinh x -I~(x)] (B.2) 

1 
B3 = ~ sinh x -  Ii(x). 

Note that an integration by parts is needed for B3, in 
order to use (A. 14). 
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2. Let 

xt2 B4= du i dv Io{2[v(x-I))] '/2} 
0 0 
.,12 (B.3) 

B'=fduf dvx-vld2[v(x-v)]'/2I'v 
0 x - u  

Using successively (A. I), (A. 10), (A.9), (A. 13), we get 

x 
B4=~Ii(x). (B.4) 

Then, changing u + x - u, v + x - v, and integrating 
by parts 

=x I Bs 4 ,(x)-½[coshx-lo(x)].  (B.5) 

3. We now write 
xt2 x--u 

B6= du ~ dve-°'+'°lo[2(uv) t/2] 
0 u 
x/2 x-,  (B.6) 

B7= I du f dve-O'+v)ul2[2(uv)l/2]'v 
0 u 

Introducing the new variable t = u + v, we write 

B 6 i d t e - '  '~  = du Io{2[u(t- u)] '/2} 
0 0 

B7 = d te - '  du u id2[u(t_u)]l/2}. 
t - - u  

0 0 

Using (B.2) and (A.4), we obtain 

B6 = l [ x -  e -x sinh x] (B.7) 

B 7  = B 6 - x  e - x  [[o(X) "~ [ , ( X ) ] -  e-Xlo(x) + I. 

4. Finally we must evaluate 

~__ Xt2 B8 du i dv e-2~lo(2V) 
o o (B.8) 

=~2 
B9 du i dv e-2V12(2v ). 

o 0 

We make use of (A.3) to (A.7) and obtain through an 
integration by parts of (A.6) 

= l r 2 x 2  e -x e -x ] 
B8 4L 3 {ll(x)+lz(x)}+x It(x) 

B 9 = B 8 + x  e-X[Io(X) + Ii(x)] 
e - x  x 

--~--[x e: - Io(x)] - ~. (B.9) 

5. We summarize the results as 

2e-X 
agp - - - - ~ - - [ 2 B 2 _  x B  1 _ W 4 _  B5 ] 

+ ~ 2 [ B 6 -  B7 + B s -  Bg] (B.10) 

2e-X xB,] + ~ [ B 6  A~o ~c =- -~- [B2 - + B8]. 

A P P E N D I X  C 

C a l c u l a t i o n  o f  y(xs) 

Let us consider the following expressions: 

e -x sinh x ~ .  ( -2x)"  
O0 -- ~ " /...a 

x ,,=1 (n + 1)! 

= ~ .  (-2x)" I e - x s i n h x _ 2  
01 x x ,=o(n+2)!  

x .=o (n + 1)! 
e-X 

03 =-T-0 , (x )  + I=(x)] 

. + ,  

n=l n !(ltl "~2)  

It is easy to see that 

a ~  = 0 ,  - 02 

a~B°=½[O,- 0o]+03. 
We use the identity 

+co 

7r (1 + r/2) "+l 
--CO 

and we define 

+co 

1j- i- -i <t,, 
Y : = - -  GL1 +r/2J 1 +r/ gr 2 

--CO 

with a = 0, 1, 2, 3. 
Therefore 

E yo = (n + 1)' :(-x=)" 
r l = O  • 

: ( 7 )  
y , = 2  .=o y" (n+2)  ' (-x*)" 

Y2 -- 
,=o ( n + l ) !  

Y 3 - - E  
,=1 n + l  \ h i \ - - - 4 /  ( n + 2 ) n f  

(B.II) 

(C.1) 

(c.2) 

(C.3) 

(C.4) 

(c.5) 
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Table 1. Y2 and Y3 as functions o f  xs 

xs Yz Y3 xs Y2 Y~, 
0 1 0 3 0.2938 0-0806 
0.05 0.9521 0-0079 4 0.2526 0.0794 
0.1 0.9086 0-0150 5 0.2246 0.0776 
0.2 0.8323 0.0269 6 0.2040 0.0758 
0.3 0.7680 0-0366 7 0.1882 0.0740 
0.4 0.7133 0.0445 8 0.1755 0.0723 
0.5 0.6664 0-0509 9 0.1650 0.0707 
0-6 0.6258 0.0561 10 0.1562 0.0692 
0.7 0.5906 0.0604 20 0.1091 0.0588 
0.8 0.5598 0.0640 30 0.0887 0.0526 
0.9 0.5325 0.0670 40 0.0766 0.0484 
1 0.5084 0-0694 50 0.0684 0.0452 
2 0.3628 0.0797 

These expressions can also be written as 
2x~ 

1 P 

I e-"lo(U) du 
oo 

Yo = Y - 2x~ 
0 

1 I Yl --~Xs du e-°lo(v) dv. 

0 0 

From Append ix  B and the identity,  

12(x) = Io(X)- -2  I x ,(x),  

Yo = yO~ = e_EX [io(2Xs) + I,(2x~)] 

4 1 
Y, = ~ Y O - ~ x  ~ e-ZX'l,(2x~). 

(C.6) 

(C.7) 

Finally,  let the qFq general ized hypergeometr ic  series 
be 

pFq(a,, . . . ,  ap; b, , .  . . ,  bq; z) 
or" = ( a , ) . .  . .. =_=(a,,). z" 

(C.8)  
,,=, (b,),, .(bq),, n! 

with ( a ) ,  = F(a + n ) /F(a ) .  
Then,  it fol!ows that  

y2 = 1 +2F2[½, 3; l, 3; -4xs]  (C.9) 

Y3 6{1  3 3 .  = + 2F2 [~, ~, 2, 4; -4xs]}. 

Y2 and Y3 are given as funct ions  of  xs in Table 1. 
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Abstract 

Appl ica t ion  of  the Rayleigh cri terion for the limit of  
resolut ion of  a s imple lens with axial  i l lumina t ion  
leads to the value 0.61A. In two-d imens iona l  electron 
densi ty maps  based on X-ray data,  the limit o f  
resolut ion has been considered to be 0.61 drain, the 
counterpar t  of  the optical  case, and  in three- 
dimer~sional maps 0.715 dmi,. It is shown here that  
point  atoms separated by these distances are not  
resolved in two- and  three-d imens ional  electron 
densi ty maps.  Such maps are ampl i tude  funct ions  
rather  than  intensi ty funct ions as in the optical  case. 

0108-7673/84/030251-04501.50 

Appl ica t ion  of  the Rayleigh cri terion to the three- 
d imens iona l  ampl i tude  funct ion  for po in t  a toms leads 
to a value of  0.917 dmi, for  the limit o f  resolut ion in 
three-d imens iona l  electron density maps.  This result 
is conf i rmed by superposing both  analyt ic  and  
numer ic  funct ions  for po in t  atoms and numer ic  func- 
t ions for real atoms with B = 0 and 10/~2. Finally,  
some impl ica t ions  of  diffraction effects in X-ray struc- 
ture analysis  are considered.  

In refining models  for  the met  and  az idomet  forms 
of  hemerythr in ,  we were par t icular ly  interested in the 
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